Evolution of Two Urbanized Estuaries

Evolution of Two Urbanized Estuaries: Environmental Change, Legal Framework, and Implications for Sea-Level Rise Vulnerability

G. Mathias Kondolf, Professor of Landscape Architecture + Environmental Planning


Pedro J. Pinto (Ph.D LAEP '15)  and G. Mathias Kondolf


Department of Landscape Architecture and Environmental Planning, University of California, Berkeley; CERIS—Department of Civil Engineering and Architecture,  Lisbon, Portugal

Project Description

The San Francisco Bay (CA, USA) and the Tagus Estuary (Lisbon, Portugal) share striking similarities in terms of morphology and urban development. A finer analysis of development patterns reveals crucial differences in the extent of shoreline alteration and types of land use that now encroach upon natural estuarine habitat. Through historical map analysis and prior stratigraphic and historical research, we reconstruct in GIS environment the evolution of both estuaries over the last millennia and the relative distribution of different classes of land cover. We also discuss the legal frameworks that accompanied this evolution, and how they have influenced the process of wetland reclamation and landfilling. We compared the legal history and synchronous patterns of development by compiling historical mapping information and resorting to GIS analysis to explore spatial patterns over time. This method was useful in isolating events and decisions that were unique to each of the case studies.

The Tagus Estuary has experienced disruption of natural environments for over two millennia. Yet, the State has been able to keep estuarine lowlands under public control, even if vast areas have been transformed into farmland. Public control could allow wetland migration with rising seas and restoration efforts. The San Francisco Bay was affected by several decades of elevated sediment loads in the 19th century, which induced rapid wetland expansion, but virtual cutoff of sediment supply by dams in the 20th century now impairs their ability to accrete. Meanwhile, tidal wetlands were subject to extremely fast and poorly regulated development. Artificially filled and/or drained wetlands were transferred to local governments and private landowners, in violation of the Public Trust Doctrine. The transformation of wetlands into salt ponds, industrial zones and even residential neighborhoods created extensive developed areas at or below sea level, which are vulnerable to even modest rises in sea level. Remaining wetlands are now heavily encroached on their landward side by urban development, which prevents their landward migration. Different legal interpretations of comparable definitions of public trusts and jurisdictions over shorelines may have significant implications for the ability to adapt to sea-level rise.

Read the full paper here: