This is where you set up the scan. Use the marquis tool to make a rectangular selection covering your scan item.

Make the appropriate selections on the left side of the page.

Set the following:
A: Select 360 positioning.
B: Select # of scans per rotation.
C: Set resolution (points per inch)
D: Set range—macro or wide.
E: Place turntable in focal range
F: Draw rectangle around scan item in the preview. Use “turn” button at top of screen to ensure item stays in rectangle while rotating. This saves scanning time.
G: Check scan time at screen bottom (ensure you have adequate time to complete scan).
H: Press green “Start” button.
Note that the scanner can overwhelm the host computer. The Points/IN-square setting combined with the Divisions setting have caused the available memory to all be consumed by the scanning process.

Both the predicted scan time and memory use are presented at the bottom of the screen before the scan begins.

Be sure to make adjustments to bring the process within time and memory limits.
This is what a partial scan looks like. The window displays scan progress in the yellow box. You can double click the green box (the scan family) and see results for each scan step.

After the scan is complete, you will move through the workflow outlined by the buttons at top center.

The first step after scanning is to trim the scan data of unwanted points.
This shows the freshly completed scan. The scan consists of multiple stitched-together frames. Individual frames can be viewed by double-clicking the green "Scan Family" box at bottom left of screen.
Here is the raw scan. Views available include textured, point-cloud, wire-frame, and surface. Select from bottom-right of screen.

Note that the turn-table and stand are part of the scan. Next you will trim the excess points from the scan.
To trim raw scan data, use the selection tools at the top-center of screen to select, de-select, and trim.

When you are finished trimming, you will move to the next step: fusing the model.
This is the scan after trimming excess points.
This is the “Buff” interface. Options allow the user to fill holes, polish (buff) the surface, and re-mesh to simplify geometry.
The CAD Tools window allows reorienting the model, as well as drawing splines and NURBS.
Congratulations, you have finished your model and are ready to export. STL is the default file option for 3D printing. OBJ can be used for printing, and also includes a photo-texture layer.